	Common Monoatomic lons								
	Charge	<mark>Cations</mark> Formula	Name	Charge	Anions Formula	Name			
-		H+	hydrogen		H-	hydride			
		Li+	lithium		F ²	fluoride			
	+1	Na+	sodium	-1	Cl⁻	chloride			
		K+	potassium		Br⁻	bromide			
		Cs+	caesium		ŀ	iodide			
		Ag+	silver						
		Mg ²⁺	magnesium		22	a viala			
		Ca ²⁺	calcium		02-	OXIDE			
	+2	Sr ²⁺	strontium	-2	S2-	suilide			
		Ba ²⁺	barium						
		Zn ²⁺	zinc						
		Cd ²⁺	cadmium						
	+3	Al ³⁺	aluminium	-3	N ³⁻	nitride			

Formula	Name	Formula	Name					
Cations								
NH4 ⁺	ammonium	H₃O+	hydronium					
	Common	Anions						
CH₃COO⁻	acetate	CO32-	carbonate					
CN-	cyanide	CrO4 ²⁻	chromate					
OH-	hydroxide	Cr ₂ O ₇ 2-	dichromate					
CIO3-	chlorate	02 ²⁻	peroxide					
NO2-	nitrite	SO32-	sulfite					
NO ₃ -	nitrate	SO42-	sulfate					
MnO ₄ ⁻	permanganate	PO ₄ ³⁻	phosphate					
vinO ₄	permanyanate	- 4	, , ,					

Acids	mula begins with F	I and the compo	ound is in acu	ueous solution, it's normally
a bina	ary acid. Add " hy	droic acio	" to root of t	the element.
e.g. I	HCI Hydroger	ı chloride	HCI(aq)	Hydrochloric acid
DXOAC	IDS (parents of ox	oanions)		
		H+		
10 ₂ -	nitr <u>ite</u> ion	H⁺	HNO ₂	nitr <u>ous</u> acid
10 ₃ -	nitr <u>ate</u> ion		. HNO ₃	nit <u>ric</u> acid
Genera	ally "ous" in the "ic" in the pare	parent acid co nt acid comes	mes from " from "ate"	ite" in the oxoanion and in the oxoanion
		2H ⁺	H₂SO	sulfurous acid
SO ₂ 2-	sulfite ion			
SO ₃ ²⁻ SO. ²⁻	sulfite ion	2H+	H.SO	sulfuric acid

1A 1 H 1s ¹	2A	,										3A	4A	54	64	76	8A 2 He 1s ²
Li 2s ¹ 11 Na	Be 2s ² 12 Mg											B 2s ² 2p ¹ 13	C 2s ² 2p ² 14 Si	$\frac{N}{2s^2 2p^3}$ 15	8 0 2s ² 2p ⁴ 16 8	F 2s ² 2p ⁵ 17	10 Ne $2s^22p^6$ 18 Ar
3s ¹ 19 K 4s ¹	$3s^2$ 20 Ca $4s^2$	3B 21 Sc 3d ¹ 4s ²	4B 22 Ti 3d ² 4s ²	5B 23 V 3d ³ 4s ²	6B 24 Cr 3d ⁵ 4s ¹	7B 25 Mn 3d ⁵ 4s ²	26 Fe 3d ⁶ 4s ²	8B 27 Co 3d ⁷ 4s ²	28 Ni 3d ⁸ 4s ²	1B 29 Cu 3d ¹⁰ 4s ¹	2B 30 Zn 3d ¹⁰ 4s ²	$\frac{3s^2 3p}{31}$ Ga $4s^2 4p$	3s ² 3p ² 32 Ge 4s ² 4p ²	3s ² 3p ³ 33 As 4s ² 4p ³	$3s^23p^4$ 34 3e $4s^24p^4$	3s ² 3p ⁵ 35 Br 4s ² 4p ⁵	$3s^23p^6$ 36 Kr $4s^24p^6$
37 Rb 5s ¹	38 Sr 5s ²	39 Y 4d ^{15s²}	40 Zr $4d^{2}5s^{2}$ 72	41 Nb 4d ⁴ 5s ¹ 73	42 Mo 4d ⁵ 5s ¹ 74	43 Tc 4d ⁵ 5s ² 75	44 Ru 4d ⁷ 5s ¹ 76	45 Rh 4d ⁸ 5s ¹ 77	46 Pd 4d ¹⁰	47 Ag 4d ¹⁰ 5s1	48 Cd 4d ¹⁰ 5s ²	49 In 5s ² 5p ¹	50 Sn 5s ² 5p	51 Sb 5s ² 5p ³	52 Te 5s ² 5p ⁴	53 1 5025p5	54 Xe 5s ² 5p ⁶
Cs 6s ¹ 87	Ba 6s ² 88	*La 5d ¹ 6s ² 89	Hf 5d ² 6s ² 104	Ta $5d^{3}6s^{2}$ 105	W 5d ⁴ 6s ² 106	Re 5d ⁵ 6s ² 107	Os 5d ⁶ 6s ² 108	Ir 5d ⁷ 6s ² 109	Pt 5d ⁹ 6s ¹ 110	Au 5d ¹⁰ 6s ¹ 111	Hg 5d ¹⁰ 6s ² 112	TI 6s ² 6p ¹	02 Pb 6s ² 6p ² 114	Bi 6s ² 6p ³	Po 6s ² 6p ⁴ ^{††} 116	At 6s ² 6p ⁵	Rn 6s ² 6p ⁶ ^{††} 118
7 <i>s</i> ¹	7 <i>s</i> ²	6d ¹ 7s ²	6d ² 7s ²	6d ³ 7s ²	5g 6d ⁴ 7s ²	BU	Hs	м				Unknown		Unknown		Unknown	
			*	58 Ce 4 <i>f</i> ² 6 <i>s</i> ²	59 Pr 4f ³ 6s ²	60 Nd 4f ⁴ 6s ²	61 Pm 4f ⁵ 6s ²	62 Sm 4/ ⁶ 6s ²	63 Eu 4f ⁷ 6s ²	64 Gd 4f ⁷ 5d ¹ 6s ²	65 Tb 4 <i>f</i> ⁹ 6 <i>s</i> ²	66 Dy 4f ¹⁰ 6s ²	67 Ho 4f ¹¹ 6s ²	68 Er 4f ¹² 6s ²	69 Tm 4f ¹³ 6s ²	70 Yb 4f ¹⁴ 6s ²	71 Lu 4f ¹⁴ 5d ¹ 6s ²
				90 Th 6d ²⁷ s ²	91 Pa 5f ² 6d ¹ 7s ²	92 U 5f ³ 6d ¹ 7s ²	93 Np 5f ⁴ 6d ¹ 7s ²	94 Pu 5f ⁶ 7s ²	95 Am 5f ⁷ 7s ²	96 Cm 5f ⁹ 6d ¹ 7s ²	97 Bk 5f ⁹ 7s ²	98 Cf 5f ¹⁰ 7s ²	99 Es 5f ¹¹ 7s ²	100 Fm 5f ¹²⁷ s ²	101 Md 5f ¹³ 7s ²	102 No 5f ¹⁴ 7s ²	103 Lr 5f ¹⁴ 6d ¹ 7s ²

oumpio	Problem	Naming Bina	ry Ionic Compounds
PROBL	EM: Name the io elements:	nic compound	formed from the following pairs of
	(a) magnesium	and nitrogen	(b) iodine and cadmium
	(c) strontium ar	nd fluorine	(d) sulfur and caesium
PLAN:	Use the periodic which the nonm	c table to decic netal. The meta	le which element is the metal and al (cation) is named first and we
SOLUTI	ON: (a) magne	sium nitride	netal name root.
SOLUTI	ON: (a) magne	sium nitride um iodide	netal name root.
SOLUTI	ON: (a) magne (b) cadmin (c) strontin	um iodide um fluoride	netal name root.

Sample Problem	Determining Formulas of Binary Ionic Compounds				
PROBLEM: Write	empirical formula for the compounds named in the ous Sample Problem.				
PLAN: Compo ion whit <i>right</i> of	unds are neutral. We find the smallest number of each ch will produce a neutral formula. Use <i>subscripts</i> to the the element symbol.				
SOLUTION:					
(a) magnesium nitrid	(a) Mg ²⁺ and N ³⁻ ; three Mg ²⁺ (6+) and two N ³⁻ (6-); Mg ₃ N ₂				
(b) cadmium iodide	(b) Cd ²⁺ and I ⁻ ; one Cd ²⁺ and two I ⁻ (2-); Cdl ₂				
(c) strontium fluoride	(c) Sr ²⁺ and F ⁻ ; one Sr ²⁺ and two F ⁻ (2-); SrF ₂				
(d) caesium sulfide	(d) Cs ⁺ and S ^{2⁺} ; two Cs ⁺ (2+) and one S ^{2⁺} ; Cs ₂ S				